
January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 1

Scalable Software Engineering
What is it? Why and How?

S. C. Kothari
Electrical & Computer Engineering Department

Iowa State University
Contact: kothari@iastate.edu, 515-441-4412

mailto:kothari@iastate.edu

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 2

Scalable Software Engineering

• SSE = paradigms, techniques,
abstractions, and practices that scale to
large software.

• End goal: Improve productivity and quality.
• What can we do differently to improve

– Research ?
– Education ?
– Industry Practices ?

• This presentation focuses on education.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 3

What have educators done?

• So far, educators have advocated:
– A new programming language every few

years.
– Composition techniques: component-based,

refactoring, reuse etc.
– Development practices: extreme, agile, and

others.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 4

Score Card

• Business Week – Industry Outlook 2004:
software productivity finished dead last,
declining from 1998 to 2003.

• Software systems continue to have ever
larger error counts.

• Financial risks of taking on a software
project are growing.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 5

What may be wrong?

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 6

Toy Problems

• Class room software engineering tends to
be about toy problems.

• What may appear unnecessary in solving
a toy problem may be critical in the
evolution of a large system in production.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 7

Misuse of Computing Power

• Software engineering uses little computer
power to support design and validation.

• Instead, software engineering uses
computer power to compensate for design
and implementation flaws.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 8

Dogmas and Fashions

• Case of object-oriented programming:
– Business week cover story (1991) - Software

Made Simple: Unlike AI, OO would have an
immediate and practical payoff.

– John Warnock, CEO of Adobe: The whole
object thing is a red herring.

• Problem solving and engineering take the
back seats.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 9

Disconnect: Academia & Industry

• Academia is working frantically to produce
research papers and to change curriculum
every few years.

• Software progress in industry is by dint of
nonconformist intellect and massive
amounts of money.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 10

Generic Programming

• Class room software engineering tends to
be about generic programming skills.

• Real-world problems are about design,
validation, maintenance, evolution, and
performance – generic programming not
the most valuable skill.

• Software is application-driven and the
engineering needs vary – no one solution
for all.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 11

Serious Problem

• In software engineering, we are reaching
the human limits of managing complexity
ad hoc.

• One million lines of code = about 8 ft stack
of paper.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 12

Teaching scalable software
engineering – what is different?

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 13

Personal Experiences

• Course projects – Adding new features to the
operating system(1988-99): An average student
spent 30 hours understanding the code, and 10
hours modifying and debugging the code.

• Research project with150K lines of legacy
software (1996-99): Of three years, we spent a
couple of month on modifying the code – rest in
understanding, debugging, and validating.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 14

An Example of Complexity
• This example is from an operating system class

project.
• The pictures show the dramatic benefit of

managing complexity:
– First picture: the daunting raw complexity
– Second picture: the dramatic reduction in complexity

after analyzing the software
• Manual effort: probably 20 to 30 hours.
• IA Tool: two minutes, assuming the expert

applies a good strategy.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 15

RAW COMPLEXITY

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 16

DRAMATIC REDUCTION AFTER ANALYSIS

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 17

Writing vs. Reading

• Current education practices focus on
writing programs.

• Reading (analyzing and understanding) is
not taught – we need to change and
emphasize program reading.

• Software maintenance costs over the total
life of the system dominate software
development costs by a factor of 2-10.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 18

Program reading is not easy

• Complex and scattered dependencies
between program components.

• Code decay: A study, using a rich data set
from the 15-plus year change history for
the millions of lines of software in a
telephone switching system, has shown
statistical evidence of code decay.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 19

Harness the Computing Power

• Powerful tools:
– Do program mining: on-the-fly extraction of

program artifacts and their relationships
– Analyze complex dependencies in large

software
• Tools based on:

– Powerful query language
– Graph transformations to manage the

complex dependencies

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 20

Intelligence Amplifying (IA) Tools

• IA tools combine mechanical processing
power of tools with intelligent decision
making of human experts.

• Frederick Brooks: “If indeed our objective is to
build computer systems that solve very challenging
problems, my thesis is that IA > AI, that is, that
intelligence amplifying systems can, at any given level of
available systems technology, beat AI systems. That is,
a machine and a mind can beat a mind-imitating
machine working by itself.”

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 21

Tool-Assisted Analysis

• It is useful for many software engineering tasks:
– Efficient debugging
– Identifying and correcting software defects
– Efficient testing
– Architectural analysis and improvements
– Code audits and safety analysis
– Impact analysis
– Automated documentation
– Generating progress and status reports

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 22

Application-specific Software
Environments

• Promote application-specific paradigms,
graphical environment, and tools for
design and analysis of software.

• Examples:
– Excel for accounting applications
– Simulink for control applications

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 23

Educational Pedagogy

• To summarize what is different:
– Program reading vs. program writing
– Real-world software vs. toy problems
– Engineering design and analysis vs.

programming dogmas and fashions
– Powerful tools vs. labor-intensive manual

practices
– Application-specific paradigms vs. generic

programming

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 24

Synergistic Activities
• Knowledge-Centric Software Engineering

Research at ISU: 9 M.S. and 4 Ph.D. graduates.
26 papers in conferences and journals, 3
patents, 12 software tools, 35 invited talks.

• EnSoft founded in 2002: Engineering services
and tools. Customers in USA, Japan, and
Europe.

• Close ties with Rockwell: DARPA Project
through ISU, tools and services through EnSoft,
senior design projects, and distance learning
courses.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 25

Scalable Software Engineering
Course 2008 Offering: Work

• Reviewing and writing a technical proposal.
• A program reading project with real-world public

domain software – tied to query language design
and use of graph transformations.

• Read two trend setting SE papers and prepare a
presentation.

• Read two techniques or tools papers and
prepare presentations.

• Participation in class discussions – writing
summary reports and suggesting discussion
topics.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 26

THANK YOU

If time permits, we can demonstrate tool-
assisted software engineering.

Contact: kothari@iastate.edu

mailto:kothari@iastate.edu

	Scalable Software Engineering�What is it? Why and How?
	Scalable Software Engineering
	What have educators done?
	Score Card
	Toy Problems
	Misuse of Computing Power
	Dogmas and Fashions
	Disconnect: Academia & Industry
	Generic Programming
	Serious Problem
	Personal Experiences
	An Example of Complexity
	Writing vs. Reading
	Program reading is not easy
	Harness the Computing Power
	Intelligence Amplifying (IA) Tools
	Tool-Assisted Analysis
	Application-specific Software Environments
	Educational Pedagogy
	Synergistic Activities
	Scalable Software Engineering Course 2008 Offering: Work

