Scalable Software Engineering
What Is it? Why and How?

S. C. Kothari
Electrical & Computer Engineering Department

lowa State University
Contact: kothari@iastate.edu, 515-441-4412

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

mailto:kothari@iastate.edu

Scalable Software Engineering

o« SSE = paradigms, technigques,
abstractions, and practices that scale to
large software.

 End goal: Improve productivity and quality.
 \What can we do differently to improve
— Research ?
— Education ?
— Industry Practices ?

e This presentation focuses on education.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

What have educators done?

e So far, educators have advocated:

— A new programming language every few
years.

— Composition technigues: component-based,
refactoring, reuse etc.

— Development practices: extreme, agile, and
others.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

Score Card

* Business Week — Industry Outlook 2004
software productivity finished dead last,
declining from 1998 to 2003.

o Software systems continue to have ever
arger error counts.

 Financial risks of taking on a software
project are growing.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 4

What may be wrong?

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

Toy Problems

e Class room software engineering tends to
be about toy problems.

 \What may appear unnecessary in solving
a toy problem may be critical in the
evolution of a large system in production.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

Misuse of Computing Power

o Software engineering uses little computer
power to support design and validation.

 Instead, software engineering uses
computer power to compensate for design
and implementation flaws.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

Dogmas and Fashions

« Case of object-oriented programming:

- B

usiness week cover story (1991) - Software

Made Simple: Unlike Al, OO would have an
Immediate and practical payoff.

— John Warnock, CEO of Adobe: The whole

O
* Pro

nject thing Is a red herring.
nlem solving and engineering take the

bac

January 25, 2008

K seats.

Copyright © 2008 S.C. Kothari All rights reserved.

Disconnect. Academia & Industry

o Academia is working frantically to produce
research papers and to change curriculum
every few years.

o Software progress in industry is by dint of
nonconformist intellect and massive
amounts of money.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

Generic Programming

e Class room software engineering tends to
be about generic programming skills.

* Real-world problems are about design,
validation, maintenance, evolution, and
performance — generic programming not
the most valuable skill.

o Software iIs application-driven and the
engineering needs vary — no one solution
for all.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 10

Serious Problem

 In software engineering, we are reaching

the human limits of managing complexity
ad hoc.

e One million lines of code = about 8 ft stack
of paper.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 11

Teaching scalable software
engineering — what is different?

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

12

Personal Experiences

e Course projects — Adding new features to the
operating system(1988-99). An average student
spent 30 hours understanding the code, and 10
hours modifying and debugging the code.

* Research project with150K lines of legacy
software (1996-99): Of three years, we spent a
couple of month on modifying the code — rest In
understanding, debugging, and validating.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 13

An Example of Complexity

* This example is from an operating system class
project.

* The pictures show the dramatic benefit of
managing complexity:
— First picture: the daunting raw complexity

— Second picture: the dramatic reduction in complexity
after analyzing the software

 Manual effort: probably 20 to 30 hours.

* |A Tool: two minutes, assuming the expert
applies a good strategy.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

14

RAW COMPLEXITY

January 25, 2008

LU

= s

.

\
(i win) [Lo
A L
i) (i
Yo
®
2)
-) sy Fop) |
-A‘-p‘ | bt ¥ i, e
" . ’
W) b \ i it (m,
1
¥
I
; y
e
AN
iy
' o . 1 i n)
) i ! (=)
U3 ' { f
Y o), i
- b\ |
[S | T s ! L J
i) (o)] f o
! [{ / / —
| ol
| - Y . -
¥ ' i
| - [i ini
|
{
{ / H
| =] 4 |
| ¥) (i),
I | i 7 4 " I
) Gagan) / (Gamad))| (et 4]
\ 1 #, Lo ' S
B sy i winl] oo
i
g ™ L
1 y hh.-'__'—n—. B
o R ™ o,) s
— i e = ‘ 1
= A : ‘ Al Ty
VI b ol 1 A s
| .65 ™ e
i A = Ly
e i) P e M
0 : T M e ;l
Wy "-'-nﬂ__n ’
L i =

i) (i

Copyright © 2008 S.C. Kothari All rights reserved.

=

y
)

Al
(e

15

DRAMATIC REDUCTION AFTER ANALYSIS

ipproc

ipdbc

DIDIDINDIE

ipfjomn @kﬁﬁh\ icmp
tta

dd
@D

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

16

Writing vs. Reading

e Current education practices focus on
writing programs.

 Reading (analyzing and understanding) is
not taught — we need to change and
emphasize program reading.

o Software maintenance costs over the total
ife of the system dominate software
development costs by a factor of 2-10.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 17

Program reading Is not easy

 Complex and scattered dependencies
between program components.

e Code decay: A study, using a rich data set
from the 15-plus year change history for
the millions of lines of software in a
telephone switching system, has shown
statistical evidence of code decay.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 18

Harness the Computing Power

e Powerful tools:

— Do program mining: on-the-fly extraction of
program artifacts and their relationships

— Analyze complex dependencies in large
software

 Tools based on:
— Powerful query language

— Graph transformations to manage the
complex dependencies

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 19

Intelligence Amplifying (1A) Tools

* |A tools combine mechanical processing
power of tools with intelligent decision
making of human experts.

 Frederick Brooks: “If indeed our objective is to
build computer systems that solve very challenging
problems, my thesis is that IA > Al, that is, that
Intelligence amplifying systems can, at any given level of
available systems technology, beat Al systems. That Is,
a machine and a mind can beat a mind-imitating
machine working by itself.”

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 20

Tool-Assisted Analysis

 |tis useful for many software engineering tasks:

— Efficient debugging

— ldentifying and correcting software defects
— Efficient testing

— Architectural analysis and improvements
— Code audits and safety analysis

— Impact analysis

— Automated documentation

— Generating progress and status reports

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

21

Application-specific Software
Environments
 Promote application-specific paradigms,

graphical environment, and tools for
design and analysis of software.

 Examples:
— Excel for accounting applications
— Simulink for control applications

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

22

Educational Pedagogy

 To summarize what is different:
— Program reading vs. program writing
— Real-world software vs. toy problems

— Engineering design and analysis vs.
orogramming dogmas and fashions

— Powerful tools vs. labor-intensive manual

practices

— Application-specific paradigms vs. generic
programming

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

23

Synergistic Activities

 Knowledge-Centric Software Engineering

Research at ISU: 9 M.S. and 4 Ph.D. graduates.

26 papers in conferences and journals, 3
patents, 12 software tools, 35 invited talks.

 EnSoft founded in 2002: Engineering services
and tools. Customers in USA, Japan, and
Europe.

e Close ties with Rockwell: DARPA Project
through ISU, tools and services through EnSoft,
senior design projects, and distance learning
courses.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

24

Scalable Software Engineering
Course 2008 Offering: Work

 Reviewing and writing a technical proposal.

« A program reading project with real-world public
domain software — tied to query language design
and use of graph transformations.

 Read two trend setting SE papers and prepare a
oresentation.

* Read two techniques or tools papers and
prepare presentations.

* Participation in class discussions — writing
summary reports and suggesting discussion
topics.

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved. 25

THANK YOU

If time permits, we can demonstrate tool-
assisted software engineering.

Contact: kothari@iastate.edu

January 25, 2008 Copyright © 2008 S.C. Kothari All rights reserved.

26

mailto:kothari@iastate.edu

	Scalable Software Engineering�What is it? Why and How?
	Scalable Software Engineering
	What have educators done?
	Score Card
	Toy Problems
	Misuse of Computing Power
	Dogmas and Fashions
	Disconnect: Academia & Industry
	Generic Programming
	Serious Problem
	Personal Experiences
	An Example of Complexity
	Writing vs. Reading
	Program reading is not easy
	Harness the Computing Power
	Intelligence Amplifying (IA) Tools
	Tool-Assisted Analysis
	Application-specific Software Environments
	Educational Pedagogy
	Synergistic Activities
	Scalable Software Engineering Course 2008 Offering: Work

